
Lecture No. 3 Thermal processes of oil refining in the gas phase. Fundamentals of the theory of gasphase thermal reactions of hydrocarbons. The chain mechanism is radical chain

- Stage 1 Initiation
- Stage 2 Propagation
- Stage 3 Interruption

In thermal cracking processes, pyrolysis, coking, the energy required to break bonds in the molecule one of the reagents is supplied in the form of heat. Then:

$$C_4H_{10} \rightarrow C_2H_5 + {}^{\bullet}C_2H_5.$$

Initiation

CH₃−CH₂−CH₃ ^t→ CH₃+CH₂−CH₃ пролан

Propagation

 $\dot{C}H_3 + CH_3 - CH_2 - CH_3 \xrightarrow{t} CH_4 + CH_3 - \dot{C}H - CH_3$ метан $\dot{C}H_2 - CH_3 + CH_3 - CH_2 - CH_3 \xrightarrow{t} CH_3 - CH_3 + CH_3 - \dot{C}H_2 - CH_3$ этан $\dot{C}H_2 - CH_3 \xrightarrow{t} CH_2 = CH_2 + H^{\bullet}$ $CH_3 - CH - CH_3 \xrightarrow{t} CH_2 = CH - CH_3 + H^{\bullet}$ пропен $CH_3 - CH_2 - CH_3 + H^{\bullet} \xrightarrow{t} CH_3 - CH_3 - CH_3 + H_2$ Interruption CH₃+ CH₃ → CH₃ → CH₃ $CH_3 + CH_2 - CH_3 - CH_3 - CH_2 - CH_3$

Cracking of alkanes

• Methane cracking conditions can not be decomposed

$$C_{2}H_{5} \xrightarrow{700^{\circ}C} C_{2}H_{2} + 2H_{2} (1) C_{4}H_{10} \xrightarrow{500^{\circ}C} C_{H_{4}} + C_{3}H_{6} (0,6)$$

метан (0,6)
 $C_{2}H_{6} + C_{2}H_{4} (0,3)$
этан (0,1)
 $C_{4}H_{8} + H_{2} (0,1)$
бутен (0,1)
бутен (0,1)
бутен (0,2)
этен (0,5) C_{10}H_{22} \xrightarrow{800^{\circ}} C_{5}H_{10} + C_{5}H_{12} (0,8)
пентен пентан (0,2)
пропен (0,5) С_{10}H_{20} + H_{2} (0)
пропен (0,5) С_{10}H_{20} + H_{2} (0)

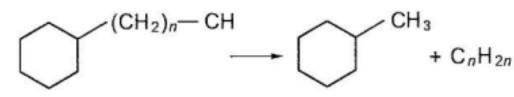
• In parentheses is given the share of the product in this direction

Cracking olefins

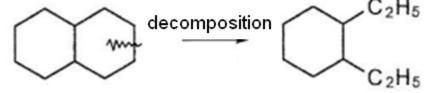
Alkenes will preferably give allyl radicals of the formula:

 $H_2C=CH-CH_2-CH_2-\dot{C}H_2 \rightarrow C_2H_4+\dot{C}_3H_5$

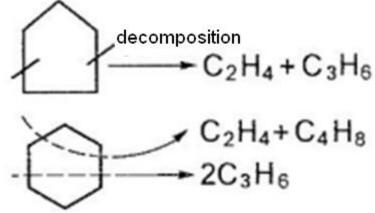
or, give dienes:


$$\begin{array}{l} H_{3}C-CH=CH-CH_{2}-\overset{\bullet}{C}H_{2}\rightarrow H_{3}C-CH=CH-CH=CH_{2}+\overset{\bullet}{H}\\ H_{2}C=CH-CH_{2}-\overset{\bullet}{C}H-CH_{2}-CH_{3}\rightarrow H_{2}C=CH|-CH_{2}-CH=CH_{2}+\overset{\bullet}{C}H_{3}\end{array}$$

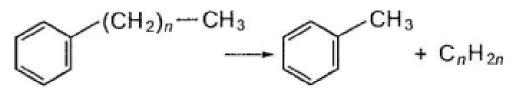
The cyclization reaction and subsequent condensation


$$HC = CH_{2} + H_{2}C = CH_{2} + H_{2}C = CH_{2} + CH_{2$$

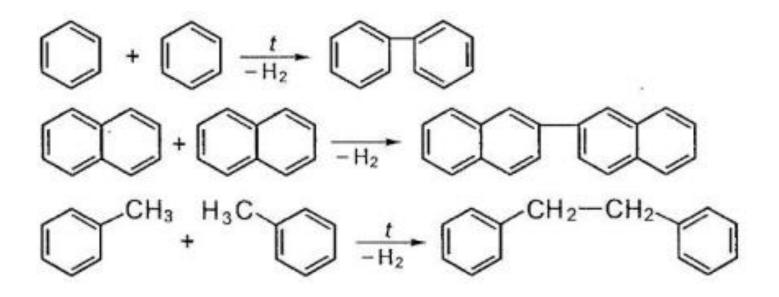
Cracking of naphthenes


• Dealkylation or shortening of the side chain paraffin:

- The dehydrogenation of naphthenic rings to form cycloolefins and aromatics;
- Partial or complete decyclization of polycyclic naphthenes after dealkylation: C_2H_5



• The decomposition of the monocyclic naphthenes to olefins:

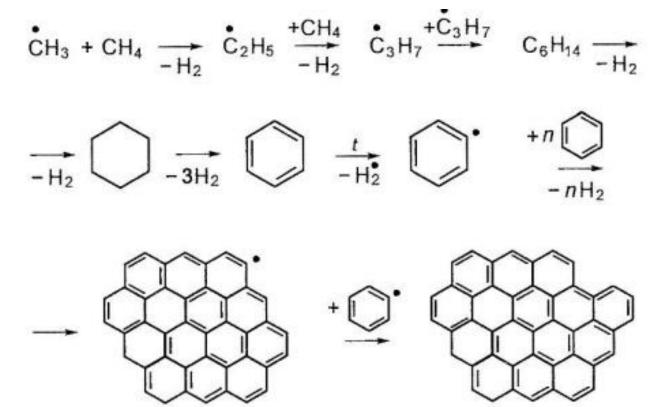


Cracking aromatics

• Dealkylation:

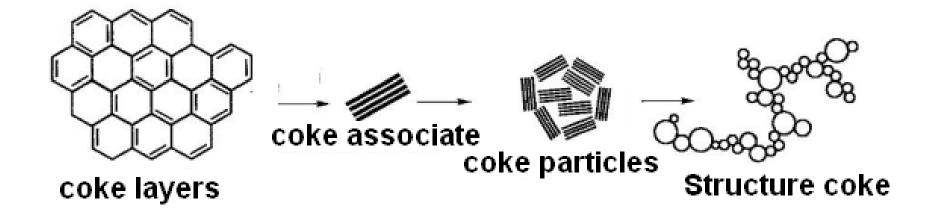
• Condensation:

Cracking of sulfur compounds


RSR'
$$\longrightarrow H_2S + Olefin$$

RSH $\longrightarrow H_2S + Olefin$

Coke formation


1. Hydrogen abstraction from the hydrocarbon molecules:

$$CH_4 \xrightarrow{t} CH_3 + H^{\bullet}$$
 $() \xrightarrow{t} ()^{\bullet} + H^{\bullet}$

2. Interaction of the hydrocarbon radical to form heavier and stable radicals:

Under the forces of intermolecular interaction coke layers are combined into associates similar molecules associate of asphaltenes and then associates are combined into coke particles.

Structure coke - with small or large coke particles - it depends on pyrolysis temperature, the concentrations of hydrogen and residence time of feedstock in the reaction zone.